Chapter 2
The Law of Special Relativity

Introduction
Several experiments have successfully tested the theory of relativity. The successes of these experiments have promoted Special Relativity to the status of a physical law. However, it is important to recognize that Special Relativity alone is classical theory because it uses particles and waves as independent entities. However, Dirac and Feynman were able to unify special relativity with quantum mechanic and create the field of quantum electrodynamics.  

Postulates of Special Relativity

Definition: Inertial Reference Frame

   An inertial reference frame is a frame where Newtons First Law is valid. That is an object at rest tends to stay at rest and an object in motion tends to stay motion.

Postulate 1 The laws of physics are the same for all inertial reference frames
Postulate 2 The speed of light in free space is the same value for all inertial reference frames.

Time Dilation 

    As the light clock moves relative to a stationary observer the observer records the light moving as a triangle.
The light clock has a length of 
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is the time for a complete cycle of the light clock. In the top of the following diagram we see the light clock in the proper frame. An observer would  observe the time described by (2.1)
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Top figure is the light clock seen on the moving object while the bottom figure is the motion of the beam as seen from and observer at rest

The frame at the bottom part of the diagram is what is seen by a stationary observer relative to a frame of the light clock moving at a velocity v.

The stationary observer will mean the light traveling a length of  
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Simplifying 
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Rearranging (2.3) 
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Factor out 
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Solve for 
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Now substitute 
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Behold
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Remark: Armed on with postulate 2 and the Pythagorean Theorem Einstein changed the course of physics

Length Contraction:

Suppose now that we rotate the light clock 90 degrees. Let us now analyze a pulse as it proceed.  
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As is illustrated in the diagram, the frame is moving with velocity v to the left.

Hence it takes the light pulse must travel a distance I
The distance the time it takes for the light to travel from left to right is 
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be the time for the return trip; the distance it travels is
[image: image18.wmf]2

2

vt

L

t

c

-

=

D

. 
In the proper frame (aboard the frame) the time is given by 
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From the observers prospective, the total time for the round trip is:
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But we have shown that:
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Substituting into 2.11 we obtain:
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Multiplying both sides by 
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 Rearranging yields the length contraction
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Example Muons A majority of cosmic rays are composed of high-energy protons. Muon creation occurs when a cosmic ray collides with a molecule in the upper atmosphere. The muon has a half-life of 
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 The Muon speed on creation is v=0.98c. Newtonian Mechanics predicts the muon would travel a distance of 

D=vt=
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However, this is not correct because we are dealing with relativistic velocities so we have to multiply by  
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  substituting v=0.98c into this equation yields 
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The significance of this number is that it allows muons to be measured a lower altitude.  In 1955 and experiment was done on a mountaintop and a statistically significant number of muon events were observed.  The results lead to the promotion of the Theory of Relativity to Law of Special Relativity. 
From the muons reference frame it sees the earth moving toward it at v=0.98c. 

Lorentz Transformation:
[image: image33.png]



Consider a moving frame and a frame at rest. If an observer at rest with respect to the moving frame measures the length of a ruler. The proper length of the ruler is L. The left end of the ruler is at zero. So the proper length is L = x’-0 or L=x’.
But, if we measure x’ then x’= x – vt using the fact that 
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Which is the Lorentz transformation for in the x direction

The Lorentz transformation for the y and z are 

            y=y’                                       (2.16)

and 

             z=z’                                      (2.17)

Note that for both reference frames x’=ct’ and x=ct if we substitute these relations into 2.14 we obtain:
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The Lorentz Transformation is be summarized as follows.
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Exercise:   Derive 2.20 from 2.19. 

An event is a point in space-time. Without any loss of generality we can will consider the point (x, t) for the observer at rest and (x’, t’) for the observer in motion. by using the Lorentz Transformation it is possible to transform points in different reference frame’s. 
Consider the two events in two different reference frames.
For the frame at rest the events are
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For the moving frame the events are
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We can now write down the transformation 
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Next we take the difference
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We now do the same thing for the time coordinates.

[image: image53.wmf]2

2

2

2

2

'

2

2

2

2

1

1

'

1

1

)

(

1

)

(

c

v

c

vx

t

t

c

v

c

vx

t

t

-

-

=

-

-

=


Again, we take the difference.


[image: image54.wmf]2

2

1

2

2

1

2

2

2

2

1

1

2

2

2

2

2

'

1

'

2

1

)

(

)

(

1

)

(

1

)

(

c

v

x

x

c

v

t

t

c

v

c

vx

t

c

v

c

vx

t

t

t

-

-

-

-

=

-

-

-

-

-

=

-

              (2.22)

This equation is interesting because it provide a method for calculating simultaneity. 
Simultaneity will be observed when 
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The following example illustrates this point.

Example Consider an observer in the rest frame who observes that two events.

Event one when 
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Event two when 
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How fast must the frame be traveling so the events are simultaneous?  

Solution:
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 The negative sign means the frame is moving from the right to left.

Problem solving clarification:

It is import for the student to distinguish between the concepts of spatial coordinate separation and length. Note spatial coordinate separation will involve event and hence an ordered pair.  The essential idea is to understand is that each pair of coordinate in space-time is an event. 

Addition of Velocities
Another use for the Lorentz Transformation is derive formulas for the addition of velocities.   Rewrite 
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Divide 2.24 by 2.25
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Divide the numerator and denominator by   
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Let 
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now substitute  them into the above expression  2.26
For the stationary frame 
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For the moving frame 
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Exercise: 

Show that 
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 EMBED Equation.3  [image: image73.wmf]2
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  Hint use the procedure we used in the derivation of (2.27a)
Exercise:  Use 2.27a to show that when two light beams approach each other there speed is c

OMG Newton was incorrect F=ma is not correct 

Relativistic Momentum 
Assume that we have two particles A and B where A is in reference frame O and B is in reference frame O’ move with velocity v with respect to reference frame O. Next consider an elastic collision between two particles A and B. Recall that in an elastic collision kinetic energy is conserved.  Before the collision A is at rest within reference frame O and B is at rest within reference frame O’.  The collision may be viewed from A frame as is illustrated in the following diagram.  
The collision as viewed from O

[image: image75.jpg]



.  The collision may be viewed from B frame as is illustrated in the following diagram.  Notice that the velocity of the particle in the B frame is of equal magnitude and opposite direction in the y direction.  

The collision as viewed from O’
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This allows use to write:
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We find the time that it takes to travel a distance y in the O frame is:
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We find the time that it takes to travel a distance y in the O’ frame is:
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In the O’ frame the speed is 
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Restating equation (2.9):
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Substituting 2.32 into 2.31 allows us to write
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Momentum is defined p=mv therefore we can write the momentum for frames O and O’ respectively as:
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Simplifying and Rearranging yields 
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We are more accustomed to see this equation is the following form
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Exercise:  Given you have a particle of mass 1 kilogram calculate the mass for 
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 Plot a graph of these values. What does this imply for a particle that has a rest mass?

By computing the relativistic mass we can now compute the relativistic momentum as: 
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Furthermore, we can now write Newtons Law as 
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We can also show 
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Exercise: derive (2.42) from (2.41)

Relativistic Energy

Classically the work equals the change in Kinetic energy. If we assume the initial, Kinetic Energy is zero we can write 
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It is sometimes convenient to define:
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We can now write 
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This may be evaluated by using parts:
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The rest energy is


[image: image108.wmf]2

0

mc

E

=

                              (2.50)

The total energy E is the rest energy plus the kinetic energy.
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Therefore if an object is moving its total energy is

E = 
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Now we square both sides of the equation (2.39)
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Multiply both sides by 
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note mv=p  is the momentum so we can now write
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and finally on rearrangement 


[image: image116.wmf]4

2

0

2

2

2

c

m

c

p

E

+

=

                    (2.53)

This is an important result which useful when you need to calculating the momentum and energy for high energy particles. 

For particles of zero rest mass 
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Lorentz Invariants:  An introduction to 4 vectors. 
A quantity that remains unchanged by a Lorentz transformation defined to be a Lorentz invariant. An alternative way of stating this is: Invariants are physical quantities that are the same for all coordinate systems. A four vector is a quantity represented by a four-tuple. A four-vector is expressed as
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A quantity is a Lorentz Invariant if
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 The interesting fact about 4 vectors is that we redefine physical quantities.  Two examples illustrate this idea, the position, and the momentum four-vector. The position of a four-vector is defined as (ict, x, y, z). Notice time is rescaled using the speed of light so the units are length. Similarly, we can write the 4-momentum as
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 so that E has units of momentum.  
Define
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Then 
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 is an invariant. 
This results in:                   

                                        
[image: image128.wmf]2

2

2

c

E

p

p

p

-

=

m

m

                    (2.56)
Example Production of antiprotons: What is the threshold energy of a proton-proton collision to anti-protons?  The idea was to collide a high-energy proton with a target proton. 
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 The following diagram illustrates the lab and center of mass reference frames.
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In the center of mass frame, the momentum is zero. After the collision, all of the protons are at rest.  We will call this quantity since the momentum is zero we can write
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From the laboratory frame, we have two particles 
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Note that 
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 EMBED Equation.3  [image: image141.wmf]2

2

2

1

2

2

2

2

1

)

(

c

mc

E

c

m

c

E

+

-

-


Multiply both sides by -
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So the Kinetic energy T of the incoming proton is:
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This experiment was performed at the Berkeley Bevatron in 1954, it successfully predicted the correct threshold energy to produce the anti-proton. The success of this and other experiment provided experiment vindication of the Law of Special Relativity.

Units:

One electron volt is equal to 
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A megavolt is  
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The gigaelectron volt is 
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Mass may be represented by 
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And Momentum may be represented by 
[image: image153.wmf]c

Mev



Example   Using 
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 Since 
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 EMBED Equation.3  [image: image162.wmf]2
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 Q.E.D.
Experimental Verification of Special Relativity 
Problems

  Problem 1. A man leaves earth as an infant  on a spacecraft and spend 50 years of his life traveling a 0.999 c.  How much time has elapsed on earth when he returns at the age of  50 years.  Assume the man’s parents put 1000 dollars in a savings account with a 6% interest rate. How much is the account worth when the man returns if it is compounded as 
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 where P is the principal, r is the interest rate and t is the time in years.
Problem 2. The mass of an electron is 
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. A photon and an electron both have Momentum of 10.0 
[image: image165.wmf]c
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. Find the total Energy of each
Problem 3.  A stationary body explodes into 2 fragment that have a mass of 20.0 kg. Both fragments have a speed of 0.8 c.  Find the mass of the original body.

Problem 4  The twin paradox.  Jennifer leaves earth when she is 30 years old her twin Kandyce stays on earth. Jennifer travels at 0.95 the speed of light for 20 years how old is Kandyce when Jennifer returns.

Problem 5 If a protons speed is tripled from 0.1c to 0.3c how much does the momentum increase. 
Problem 6 Consider any particle, at what speed does the particle have to be traveling for its kinetic energy to have to equal its rest mass?

Problem 7 Two space ships are approaching each other. Spaceship A is moving at 0.95c and Space ship B is moving at .75c. How fast are they approaching?
Problem 8 An observer moving at a velocity v=0.8c observes a camera flash at x’=100 meters   y’=z’=0 and t’=
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. What are the space-time coordinates for an observer at rest? 

Problem 9  An electron is collides with an electron at rest. What is the threshold energy for positron production?

Problem 10 The 
[image: image167.wmf]0
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is at rest with respect to an observer. It decays into two 
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 The rest mass of the 
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 is 135 Mev and the rest mass of 
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